Microgrid Design Toolkit (MDT)

DLA WWEC
National Harbor, Maryland
April 11, 2017

Abraham Ellis, Ph.D.
Manager, Renewable and Distributed Systems Integration

Sandia National Laboratories
Albuquerque, NM, USA

aellis@sandia.gov
Outline

- Smart Grid and Microgrid RD&D Program at the U.S. Department of Energy
- Microgrid Applications for Military and Civilian Critical Infrastructure Energy Resilience
- Sandia Microgrid Design Toolkit (MDT)
- Q&A
DOE Office of Electricity (OE)

- MISSION: The Office of Electricity Delivery and Energy Reliability (OE) drives electric grid modernization and resiliency in the energy infrastructure.

- OE leads the Department of Energy’s efforts to ensure a resilient, reliable, and flexible electricity system.

- OE serves as the Energy Sector Specific lead for Federal emergency response.
DOE/OE Smart Grid R&D Program Areas

Microgrid Research, Development and Demonstr.
For commercial viability, reliability, and resiliency

Continue R&D pathway to support achieving DOE program goals related reliability, efficiency, environmental impact, and cost effectiveness

Support the DOE strategy, leading to creating a smarter and more resilient grid and community.

Advanced Distribution Management System (ADMS)
Providing better control and visibility

Develop architectures that integrate new & existing applications across the utility enterprise to accommodate rapid and complex communications/interactions between D&T; develop operational control strategies using advanced analytics.

Resilient Electric Grid Research and Development
For enhanced grid resilience

Implement high-priority R&D projects identified in the resilient grid roadmap, developed in a broad stakeholder workshop in 2014 and finalized during the QER in 2015.

Market-Based System Operations and Controls
Enabling economical and flexible stability

Develop simulation tools for the impact of transactive control, establish valuation basis for customer-delivered and grid-delivered energy services, and assess how to achieve a more distributed customer-driven grid.
Multi-Year Plan R&D Timeline

Niche Applications
• >15% Peak load reduction (Renewable & Distributed Systems Integration)
• Military (energy secure microgrids & SPIDERS)

Planning & Design
• Microgrid Design Toolset (MDT)
• Commercial applications of ESM (states and regions)

Control, Coordination, & Protection
• Grid-interactive controller (steady state & transient)
• FY14 FOA projects (meeting DOE targets & resilience)

Operational Optimization of Single Microgrid
• Field demo down-selected FY14 FOA projects
• DC microgrids

Operational Optimization of Multiple Microgrids
• Integrated microgrids (AC only, DC only, and AC/DC hybrids)
SPIDERS JCTD Program

- Smart Power Infrastructure Demonstration for Energy Reliability and Security

PEARL HARBOR / HICKAM AFB CIRCUIT LEVEL DEMONSTRATION
- Renewables
- Storage
- Energy Management

FT CARSON MICRO-GRID
- Large Scale Renewables
- Vehicle-to-Grid
- Large scale storage
- Critical Assets
- Demonstration to tie in with COOP Exercise

CAMP SMITH ENERGY ISLAND
- Entire Installation
- Smart Micro-Grid
- Islanded Installation
- High Penetration of Renewables
- Demand-Side Management
- Redundant Backup Power
- Makana Pahili Hurricane Exercise

TRANSITION
- Template for DoD-wide implementation
- CONOPS
- TTPs
- Training Plans
- DoD Adds Specs to GSA Schedule
- Transition to Commercial Sector via DOE
- Transition Cyber-Security to Federal Sector and Utilities

CYBER-SECURITY
SPIDERS Phase 2 – Fort Carson Microgrid

- **SPIDERS microgrid elements**
 - 1 MW PV, 3.25 MVA diesel genset
 - 5 electric vehicles with V2G capability
 - Capable of providing demand response, peak shaving, and ancillary services, voltage support (EV chargers)
 - Provide voltage/frequency stability in microgrid mode
- **Successful operational readiness demonstration with all microgrid resources online**
 - Identified operational process gaps/lessons
 - Control software refinements

Courtesy of Melanie Johnson, USACE/CERL
Civilian Energy Infrastructure Resilience

- Superstorm Sandy (2009) caused major disruption to critical infrastructure in NY & NJ, including rail system
 - Impact to economy and cost of repairs are in the $Billions
 - Re-build efforts emphasize resiliency with respect to future events
Sandia and NJ TransitGrid Project

- Resilient rail transportation in the event of a storm and grid outage
- Conceptual Design: Large microgrid and distributed resources
 - Gas-fired generating station and other DER (PV, storage, CHP, EV)
Energy Resilience Planning Process

- Develop conceptual design
 - Define system boundaries, design basis, performance objectives and metrics (typically risk-based)
 - Identify and characterize critical functions, related infrastructure and interdependencies
 - Identify conceptual designs and R.O.M. cost
 » A microgrid is often one of the options to consider
- Optimization across design alternatives
- Decision to proceed
 - Procurement
 - Engineering design
 - Construction / Deployment
 - Operation

Sandia and other DOE labs have developed methodologies, metrics, and tools to address gaps in this application space.
Microgrid Design Toolkit (MDT)

- MDT is a decision support software for microgrid designers in the early stages of the design process.
- Powerful search algorithms to identify and characterize the trade space of alternative design decisions in terms of user defined objectives.
 - Common examples of such objectives are cost, performance, and reliability.
- Advanced features to extract information and explore the trade space.
Sandia-developed Microgrid Design Toolkit (MDT) characterizes the trade-space and provides what-if analysis of design choices to provide quantitative insights to decision makers for hybrid energy solutions.

Mission Requirements and Baseline Models
- Equipment deployed creates demand
- Or demand (load) models
- Or custom load models

Equipment Data Base
- Energy demand/production
- Usage specification
- Reliability information

Technology Options and User Inputs
- Identify energy producers and technology insertion options
- Select location and season (solar and/or wind profile)
- Reliability/maintenance data
- Select user mode
 - Performance analysis
 - Parametric study
 - Optimization

MDT Results
- Energy performance
 - Energy availability, cost, fuel used, volume, silent watch, gen utilization
- Parametric sweep results
- Optimal & feasible solution sets
 - Generator types/counts
 - PV type/amount
 - Battery type/quantity

ITERATIONS to Refine Results
Pareto Frontier of Feasible & Optimal Options

- All solutions shown in Pareto frontier; filter to show feasible solutions
- Examine progression of solutions with 10kW AMMPS generator
 - Starts w/ best “Cost” fitness solution, then adds technology to increase performance

- 2 10kW AMMPS gens + 4 cases
- Adv solar + 6 batt packs

- 4 Cases Adv solar + 6 batt packs + gen

- 4 Cases Conv solar + 6 batt packs + gen

- 3 Cases Conv solar + 6 batt packs + gen

- 2 Cases Conventional solar + 6 Batt 4-packs + Gen

- 6 Battery 4-packs + Gen

- 1 10kW AMMPS Gen, +5 Battery 4-packs
MDT Origins and Technology Transfer

- Underlying analytic capabilities (TMO, PRM) developed as part of the DOE/DOD SPIDERS program.
- Subsequent DOE-funded effort combined TMO/PRM with various capabilities across national labs into a holistic microgrid design toolkit.
- Publically available
- Further MDT development recently completed with funding from US Marine Corps.
 - Improvements to both the analytics and the user interface.
 - 1.2 Beta has been delivered to USMC, will make available to public in near future.
Recent MDT Enhancements for USMC

- Need: in-house analysis capability to help inform the USMC planning, requirements development and acquisition decision making processes about expeditionary energy technologies, including alternative energy technologies, microgrids, etc.
- In February 2017, Sandia delivered an in-house USMC version of MDT
- Follow-on support for model development, deployment/MDT-use and additional capability development

- **Usability:** Design drag-n-drop features, simpler information displays, etc.
- **Enhanced Modeling Options:** Silent Watch, battery usage profiles and operating modes, weight and volume performance metrics, etc.
- **Parametric Analysis:** Ability to sweep design parameter and discern performance trends (e.g., fuel utilization vs. battery size)
The SPIDERS Program used a predecessor to the MDT to develop the preliminary microgrid designs for 3 military bases.

- Joint Base Pearl Harbor–Hickam (HI)
- Fort Carson (CO)
- Camp Smith (HI)

These microgrids are currently in operation.

The City of Hoboken, NJ used a predecessor to the MDT to develop the preliminary microgrid design for backup power in response to Hurricane Sandy.

The primary goals of this design effort were to mitigate the impacts of extreme flooding on the distribution systems and electricity service throughout the city.

The US Marine Corps Expeditionary Energy Office (E2O) used the MDT to assess microgrid power systems and Mobile Electric Hybrid Power Sources (MEHPS) for expeditionary units and brigades.

Over 50 microgrid models were developed in the MDT and used to provide design support for these islanded power systems. Assessed tradeoffs related to MEHPS diesel generator fleet.

The US Marine Corps Systems Command (SYSCOM) funded a specialized version of the MDT to aid in the USMC in making smart choices in planning investments in microgrids and renewable energy technologies.

This effort resulted in a delivered software product for in-house use by the USMC in making investment decisions related to the USMC portfolio of Energy Technologies and Systems.
Spectrum of Potential Uses for MDT

- Small Power
 - Soldier as a microgrid
 - UAVs as microgrids
 - Gliders as microgrids
 - 24-hrs Aloft – Navy proposal

- Big Power
 - Military Bases
 - Urban Centers

Towards 100% Clean Resilient US Energy
Questions? Comments?

John Eddy, jpeddy@sandia.gov
Nadine Miner, neminer@sandia.gov
Abraham Ellis, aellis@sandia.gov